Grant Writing Principles

A basic framework for effective communication
Quick intro to Elisabeth
Prior Experience

Funded Proposals

Favorable Review

Publishers
Overall Goal
3

The Silver Platter
Help the reviewer.

1. Follow the directions.

• Structure your proposal exactly as prescribed.
• Don’t get creative!
• Don’t skip any sections.
• Get in touch early with questions for the funder.
Help the reviewer.

2. Get out of the way of the information

- Drop the jargon.
- Be explicit, specific, and precise.
- Don’t bury the lede.
Help the reviewer.

3. Export your thoughts.

- Get everything out of your head and in writing.
- Build your logframe from the start.
- Use visuals to show how you conceptualize the problem/solution.
Export your thoughts.

Get it out of your:

- Head
- Notes
- Emails
- Related proposals

And into one dedicated document.
Export your thoughts.

Build your logframe from Day One...and keep it current!

- Serves as an outline
- Stress-tests your idea
- Quick reference
- Keeps the team on the same page
Export your thoughts.

Use visuals to show:

- How you conceptualize the issue

Figure 1 – Environmental Governance Interventions
Correspondingly, the precision toxicology investigation (described in 2.2) progresses from uncertainty to greater certainty, identifying the health conditions and chemical mixtures prevalent in the community through stages of research that increasingly sharpen the association between pollution and the cause of harm to human health (Figure 2). These progressive stages of precision toxicology research begin with informational investigation, acting on community-identified priorities to produce data on the chemical and health conditions present; proceed to linkages indicative of causation, suggesting potential pathways of exposure to chemicals of high concentration with potential toxicological outcomes; demonstrate relational associations, qualitatively describing toxicity pathways by which specific mixtures of the identified chemicals induce adverse health outcomes; enable probative analysis, quantitatively determining how the community became exposed to the harmful chemicals and how these problems can be corrected; and generate predictive knowledge, prospectively indicating how such harms could be prevented in the future through processes such as containment or chemical re-engineering.

Figure 2 – Precision toxicology process
Export your thoughts.

Use visuals to show:

- How relevant disciplines conceptualize the issue

Figure 2 – Integration of research lenses
Export your thoughts.

Use visuals to show:

- How **key stakeholders** conceptualize the issue
Impact
Impact

<table>
<thead>
<tr>
<th>Result category</th>
<th>Commitment</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outputs</td>
<td>Promise</td>
<td>Data collection, workshops, trainings, meetings, communications</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Expect</td>
<td>Capacity building, policy integration, uptake of technology/method</td>
</tr>
<tr>
<td>Impact</td>
<td>Hope and Dream</td>
<td>Natural resource preservation, reduced pollution, improved health, reduced poverty</td>
</tr>
</tbody>
</table>
Key content

- Title
- Summary
- Beginning and end
- Theory of change
- RFP specific
 - e.g., Pathways to Impact, Impact Summary
You gotta have heart...
You gotta have heart...
If this project succeeded beyond your wildest dreams, how would the world be different?
Risk
Risk ↓

High Risk, High Reward?
Risk

High Risk, High Reward

Innovation
Risk

<table>
<thead>
<tr>
<th>Key risk</th>
<th>Need to demonstrate</th>
<th>Example mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>YOU</td>
<td>Track record</td>
<td>Partnerships, Advisory Board</td>
</tr>
<tr>
<td>Stakeholders</td>
<td>Willingness, Momentum, Investment Agency</td>
<td>Piloting, letters of support/MOUs, bottom-up strategies, responsive/flexible approaches, participatory evaluation</td>
</tr>
<tr>
<td>Technical failure</td>
<td>Robust systems, Safety, Confidentiality, Ease of use</td>
<td>Backups, trainings, security measures</td>
</tr>
<tr>
<td>Activity failure</td>
<td>Evidence of effectiveness</td>
<td>Resilient model (failure in one part does not cause the whole project to fail), ongoing monitoring & evaluation and adjustment</td>
</tr>
<tr>
<td>Sustainability</td>
<td>Self-sustaining mechanisms, Sources of support</td>
<td>Leverage networks, ensure staff continuity, create transition plans</td>
</tr>
</tbody>
</table>
Key content

- Risk register
- Project-relevant bios
- Related prior successes
- Yours
- Stakeholders’
- Partnerships/support
- Post-program plan
- Monitoring and evaluation *integrated throughout project*

Risk Assessment Table

<table>
<thead>
<tr>
<th>Risk Description</th>
<th>Owner</th>
<th>Responsibility</th>
<th>Effect</th>
<th>Probability</th>
<th>Impact</th>
<th>Level of Risk</th>
<th>Risk Response Strategy</th>
<th>Cost of Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lack of acceptance by investor of design proposal</td>
<td>Owner</td>
<td>Delays in approval</td>
<td>Increase in costs due to the abandonment of work on the design process</td>
<td>5-40%</td>
<td>500 hours-5000 hours</td>
<td>Low</td>
<td>Reduce</td>
<td>0</td>
</tr>
<tr>
<td>Design and difficulties in obtaining systems and permits</td>
<td>Owner</td>
<td>Delays in project development</td>
<td>Delay in design process, overlooking stages of design</td>
<td>5-40%</td>
<td>500 hours-5000 hours</td>
<td>Medium</td>
<td>Increase</td>
<td>500 hours</td>
</tr>
<tr>
<td>Contracting difficulties in obtaining resources for design</td>
<td>Owner</td>
<td>Insufficient funds</td>
<td>Insufficient funds among team members</td>
<td>5-40%</td>
<td>500 hours-5000 hours</td>
<td>Low</td>
<td>Reduce</td>
<td>150 hours</td>
</tr>
<tr>
<td>Optimistic assessment of employee workload</td>
<td>Designer</td>
<td>Approval of unrealistic deadlines for individual work</td>
<td>Delay in design work</td>
<td>5-40%</td>
<td>500 hours-5000 hours</td>
<td>Low</td>
<td>Reduce</td>
<td>1200 hours</td>
</tr>
<tr>
<td>Incorrect information from investors of other guidelines</td>
<td>Investor</td>
<td>Design error</td>
<td>Design may be based on incorrect or incomplete information</td>
<td>40-70%</td>
<td>3.5 million</td>
<td>High</td>
<td>Increase</td>
<td>2000 hours</td>
</tr>
<tr>
<td>Staff do not have sufficient knowledge about the project</td>
<td>Designer</td>
<td>Errors in design</td>
<td>Verification of errors will increase costs and increase time due to the development of the next revision of design</td>
<td>5-40%</td>
<td>3.5 million</td>
<td>Medium</td>
<td>Reduce</td>
<td>650 hours</td>
</tr>
<tr>
<td>Acceptance of unrealistic deadlines in contract</td>
<td>Designer</td>
<td>Poor contractual provisions</td>
<td>Verification of design quality failure to meet the deadline</td>
<td>40-70%</td>
<td>2 million</td>
<td>High</td>
<td>Increase</td>
<td>1200 hours</td>
</tr>
<tr>
<td>Undervaluation of design budget</td>
<td>Investor</td>
<td>Budget may be insufficient</td>
<td>Ensuring compliance with relevant standards</td>
<td>40-70%</td>
<td>3.5 million</td>
<td>High</td>
<td>Reduce</td>
<td>430 hours</td>
</tr>
</tbody>
</table>
What could possibly get in the way of this project succeeding and what can I do to prevent that?

What might someone who doesn’t know as much as I do perceive as a problem and how can I show that it’s not?