

PROTECTING DUGONGS CONSERVING SEAGRASS CHANGE FOR COMMUNITIES

Seagrass research & ecosystem services

THE GEF DUGONG AND SEAGRASS CONSERVATION PROJECT
20-21 October 2015
Colombo, Sri Lanka

What is the question you are trying to answer?

```
Resource inventory (supporting dugong populations)
extent
abundance (e.g. % cover, biomass, etc)
species
Level of change (natural vs impacted)
Health (resilience)
Ecosystem services
Threats
```

What is the environment?

water depth, water clarity, remoteness, etc social / political

Resource inventory

Scale

Mapping requires different approaches depending on whether survey area is relative to a region (tens of kilometres), locality (tens of metres to kilometres) or to a specific site (metres to tens of metres).

Accuracy

Errors that can occur in the field directly influence the quality of the data.

Choosing a Survey/Mapping strategy

A decision tree. The data capture methods used to map the distribution of seagrass meadows vary according to the information required and the spatial extent. From McKenzie etal. 2001.

What is the size of the region or locality to be mapped?

Less than 1 hectare	1
1 hectare to 1km ²	2
1km² to 100 km²	3
greater than 100 km²	4

1 Fine/Microscale (Scale 1:100 1cm = 1m)

Intertidal aerial photos, in situ observer Shallow subtidal (<10m) in situ diver, benthic grab

Deepwater (>10m) SCUBA, real time towed video camera

2. Meso-scale (Scale 1:10,000 1cm = 100m)

Intertidal aerial photos, in situ observer, digital

multispectral video

Shallow subtidal (<10m) in situ diver, benthic grab

Deepwater (>10m) SC UBA, real time towed video camera

3. Macro-scale (Scale 1:250,000 1cm = 250 m)

Intertidal aerial photos, satellite

Shallow subtidal (<10m) satellite & real time towed video camera

Deepwater (>10m) real time towed video camera

4. Broad-scale (Scale 1:1,000,000 1cm = 10 km)

Intertidal satellite, aerial photography

Shallow subtidal (<10m) satellite, aerial photography & real time

towed video camera

Deepwater (>10m) real time towed video camera

Can I use remote sensing?

Benthic characterization

REMOTE SENSING TOOLKIT

A Toolkit for managers and scientists planning to use Remote Sensing to map and monitor parameters in terrestrial, marine and atmospheric environments.

Proceed directly to marine remote sensing toolkit

view intro

https://www.gpem.uq.edu.au/rsrc-rstoolkit

Monitoring

The level of change and accuracy of the detection will vary according to the methodology.

Environmental monitoring programs should ideally be designed to

quantify the causes of change;

examine and assess acceptable ranges of change for the particular site; and

to measure levels of impacts.

Monitoring

Explicit objectives

Identified responsibilities (e.g., Gov agencies, consultants, community groups)

Rationale for using parameters (e.g., physico/chemico, biological indicators)

Baseline assessment / measure

Knowledge of spatial and temporal variation

pilot study

Defined field protocols

Other considerations / challenges

Capacity needed

standardised methodologies skills of personnel (both field + analysis) participatory mapping / monitoring (e.g. questionnaire or field assistance) training (education / capacity building) equipment (technology, software, etc)

Appropriateness

Legal / Institutional sensitivities Cultural sensitivities (e.g. taboo areas)

Timing / frequency

time of year (e.g. growing season, weather, etc)

Seagrass Ecosystem Services

Source: Millennium Ecosystem Assessment

> Assumed but poorly quantified in many locations

Fisheries, livelihoods and food security

Provisioning services

Why assess ecosystem services?

Which ecosystem services?

At what scale can you collect <u>meaningful</u> data <u>relevant</u> to your study?

VILLAGE		DATE RESPONDE		NT	ITINTERVIEWER				
spor	ndent backgrour	nd informatic	in						
6	Sender M	ale Female							
A	Age 15 18 19	9 24 25 30	31 35 38 40 4	11 45 4	8 50 51 55	56 60	165 66	70 71	+
N	Marital Status N	lever married	Married Separa	ded	Divorced	Widow	ed		
н	low many years	have you liv	ed in this village	9<1 2	3 4-6 7-1	0 11-15	16-20	21-25	25+
ıset	hold Characteris	tics							
-	note characteris								
	How many famili	es live in your	household?						
	How many people	e live in your	household?	Men	W	omen		Childre	n
\rightarrow									
	Does any member of your household own.			Cance	Motorboat	Fishing no	t Bubu	Fish fend	00
				Other fishing gear					
\neg	What benefits does your household currently of			of from	Income	Food	В	oth	
	marine and coastal resources?						_	our	
- 1					Other (if so	i pinesse sp	өсту)		

Consider your methods to reflect the data you need

Your data analysis and presentation

Ecosystem services vary with space, time and species

Ensure you communicate the findings to the appropriate people

Other considerations / challenges

Data

- Managing errors a QAQC program
- Data management procedures, selection of statistical tools
- Data repository (legacy of data)
- Usefulness and use of data (e.g. improved decision-making, improved site conservation)

Final thoughts

- Beyond linear thinking
- How will this lead to a change

PROTECTING DUGONGS CONSERVING SEAGRASS CHANGE FOR COMMUNITIES

Thank you for your attention!

Name: Len McKenzie

Position: Principal Researcher / Director Seagrass-Watch

Organisation: James Cook University / Seagrass-Watch

E-mail: <u>Len.McKenzie@jcu.edu.au</u> / <u>hq@seagrasswatch.org</u>

www.seagrasswatch.org

Name: Richard Unsworth

Position: Research Officer in Marine

Ecology

Organisation: Swansea University

E-mail: <u>r.k.f.unsworth@Swansea.ac.uk</u>

www.projectseagrass.org